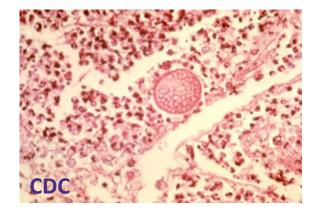
Soil and climactic predictors of canine coccidioidomycosis seroprevalence in Washington

Julianne Meisner, BVM&S (Vet), MS

Department of Epidemiology/Center for One Health Research University of Washington


September 11, 2018

Outline

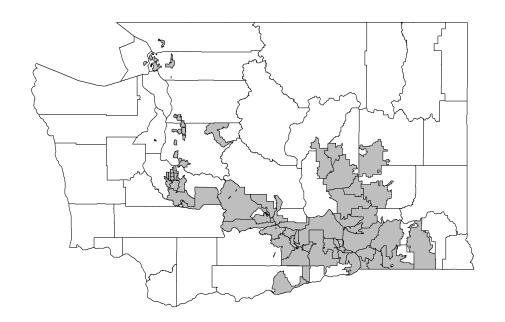
- > Background
- > Motivation
- > Study design
- > Analysis
- > Findings
- > Implications

Background

- > "Valley Fever", "cocci"
 - Fungal pathogen: *Coccidioides immitis*, *C. posadasii*
- > 2010: locally-acquired human cases
 - Franklin, Walla Walla, Yakima, Benton
- > Saprophytic; poor competitor
 - Inhalation
 - 60% subclinical, 1% fatal pulmonary or disseminated disease
 - Dust exposure in dry months after periods of heavy rain
- > Positive soil samples: Yakima, Benton

Motivation

- > Positive soil isolation challenging
- > 2007: ecological niche map developed for Southwestern US and Mexico
- > Goal: ecological niche map for Washington State
- > 2015: Canine serosurvey conducted by Washington Department of Health to inform this map
 - "Animal sentinel" for human risk


Motivation

> Why dogs?

- Susceptibility, latency
- Lower cost
- Higher exposure
- Companion species
- Reduced exposure misclassification
- Informs veterinary practice

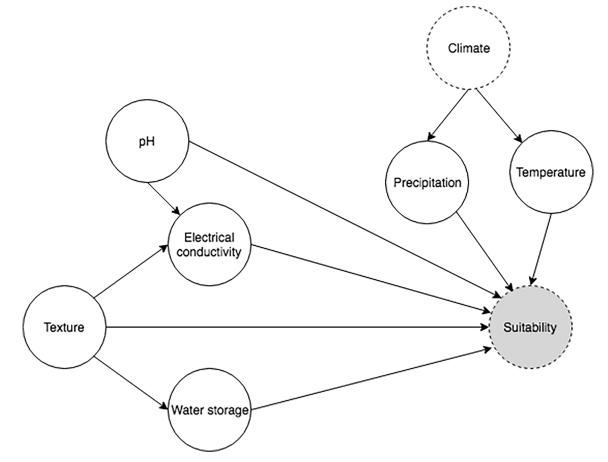
Design

- > Cross-sectional ecological study
- > Level = zip code tabulation area (ZCTA)
- > Urban, suburban, and rural communities in western, south-central, and eastern Washington

Geographic extent of study area within WA

Design

> **Exposure:**


- USDA Soil Survey Geographic Database (SSURGO)
- December 2013-September 2017
- Soil variables: texture, electrical conductivity, water storage, pH
- Climactic variables: air temperature, precipitation

> Outcome:

- Canine serology
- All dogs presenting for venipuncture to participating veterinary clinics
 - > 6 "exposed" counties (eastern and south-central WA)
 - > 2 "control" counties (western WA)
- > Linkage: ZCTA of residence

Hypothesized relationships between the exposure variables

Analysis

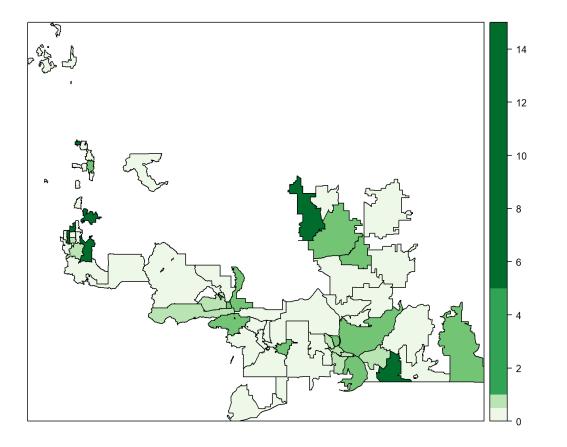
- > **Prevalence:** $p_i = \frac{Total \ positive \ dogs \ in \ ZCTA_i}{Total \ tested \ dogs \ in \ ZCTA_i}$
- > Five analytic models fit:
 - Model 1: texture only
 - Model 2: electrical conductivity, adjusted for pH and texture
 - Model 3: water storage, adjusted for texture
 - Model 4: pH only
 - Model 5: temperature, precipitation, temperature*precipitation interaction
- > **Model:** $logit(p_i) = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + e_i$
- > Missingness: complete case

Analysis

> Sequence of models fit for Models 1-5

> Non-smoothing models

- Logistic regression: $var(Y_i) = p_i(1-p_i)$
- **Quasi-likelihood model:** $var(Y_i) = \kappa p_i(1 p_i)$
- Fit with and without de-trending
- Moran's I on residuals (clustering)
- > Smoothing models
 - Binomial logit-normal Bayesian hierarchical non-spatial smoothing model: $e_i | \sigma_e^2 \sim_{iid} N(0, \sigma_e^2)$
 - Binomial logit-normal Bayesian hierarchical spatial smoothing model: $e_i = S_i + \epsilon_i$
 - $> \epsilon_i |\sigma_{\epsilon}^2 \sim_{iid} N(0, \sigma_{\epsilon}^2)$ $> \mathbf{S} |\sigma_s^2 \sim ICAR(\sigma_s^2)$


> 1,013 dogs, 72 ZCTAs

Variable	Mean	SD	Range
Cases	0.96	2.31	0-17
Tested dogs	14.1	30.5	1-213
Seroprevalence $(\%)$	9	20	0-1
Clay $(\%)$	12.5	5.66	5.7 - 27.5
Silt (%)	46.0	12.2	25.5 - 70.4
Sand $(\%)$	41.4	14.0	9.6-65.7
Water storage (volume fraction)	19.7	5.47	11.6-31.7
Air temperature (Celsius)	9.63	1.25	5.7-11.0
Precipitation (millimeters)	672	650	190-2275
Electrical conductivity (dS/m)	0.37	0.34	0-2
$_{ m pH}$	7.11	0.83	5.6 - 8.0

Data are provided at the ZCTA level. Cases: seropositive dogs

> Higher prevalence in central and eastern ZCTAs

Prevalence ratios

- > No evidence for temperature*precipitation interaction
- > No evidence of clustering or overdispersion → can interpret logistic model

Parameter Logi		ogistic	Quasi-likelihood		Non-spatial smoothing	Spatial smoothing
	No detrend	Detrend	No detrend	Detrend		
Clay	$9.48\ (0.37,\ 242)$	$7.75\ (0.30,\ 199)$	9.48 (0.37, 242)	7.75(0.30, 199)	1.00(0.995, 1.006)	$1.00\ (0.995,\ 1.007)$
Silt	$9.85\ (0.38,\ 255)$	$8.02\ (0.31,\ 209)$	$9.85\ (0.38,\ 255)$	8.02 (0.31, 209)	1.00(0.998, 1.002)	$1.00 \ (0.998, \ 1.002)$
Sand	9.90(0.38, 257)	$8.05\ (0.31,\ 211)$	$9.90 \ (0.38, \ 257)$	$8.05\ (0.31,\ 211)$	1.00(0.999, 1.002)	$1.00\ (0.999,\ 1.003)$
EC	$0.62\ (0.10,\ 3.71)$	$0.63\ (0.11,\ 3.79)$	$0.62\ (0.10,\ 3.71)$	$0.63 \ (0.11, \ 3.79)$	$0.96 \ (0.84, \ 1.10)$	0.96 (0.83, 1.11)
$_{\rm pH}$	$1.05\ (0.76,\ 1.45)$	$1.06\ (0.78,\ 1.44)$	$1.05\ (0.76,\ 1.450$	$1.06\ (0.78,\ 1.44)$	1.00(0.988, 1.020)	$1.00 \ (0.988, \ 1.020)$
WS	$0.98 \ (0.88, \ 1.09)$	$0.98 \ (0.89, \ 1.09)$	$0.98 \ (0.88, \ 1.09)$	$0.98 \ (0.89, \ 1.09)$	1.00(0.987, 1.005)	$0.995\ (0.985,\ 1.006)$
Temp	$1.70\ (0.96,\ 3.02)$	$1.73\ (0.99,\ 3.02)$	$1.70\ (0.96,\ 3.02)$	$1.73 \ (0.99, \ 3.02)$	1.00 (0.996, 1.014)	$1.004 \ (0.99, \ 1.02)$
Precip	$1.001 \ (1.00, \ 1.002)$	$1.001 \ (0.9998, \ 1.002)$	$1.001\ (1.00,\ 1.002)$	$1.001\ (1.00,\ 1.002)$	$1.00 \ (1.00, \ 1.00)$	$1.00 \ (1.00, \ 1.00)$

TA7

Prevalence odds ratio (95% CI). For the smoothing models, these estimates refer to the posterior median and 95% credible interval. No detrend: model fit without latitude and longitude of ZCTA centroids; detrend: model fit with latitude and longitude of centroids. Clay: %; silt: %; sand: %; EC: electrical conductivity in dS/m; WS: water storage; Temp: mean annual air temperature in degrees Celsius; Precip: mean annual liquid precipitation in millimeters.

> No significant findings

- Texture: strong positive but non-significant effect
- Temperature: possible modest positive association
- Electrical conductivity: moderate negative association
- pH: slight positive association
- Soil water storage, annual precipitation: no evidence of association

Implications

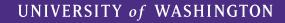
> Limitations:

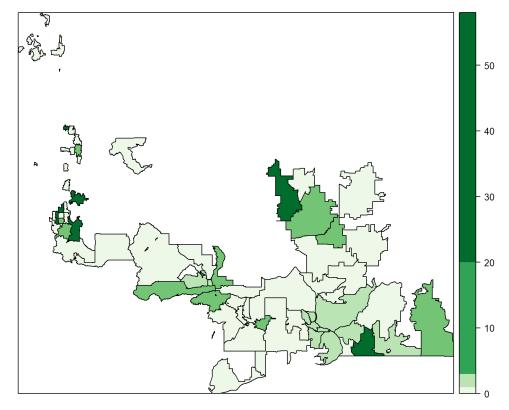
- Few positive cases
- Canine seroprevalence ≠ soil suitability (true outcome of interest)
- Cross-sectional study, ecological design
- Pure specification bias due to aggregation of SSURGO data
- Modelling assumptions made: linear terms, relationships between variables
- No animal-level data: travel history, age, breed, indoor vs. outdoor, owner SES
- Selection bias

Implications

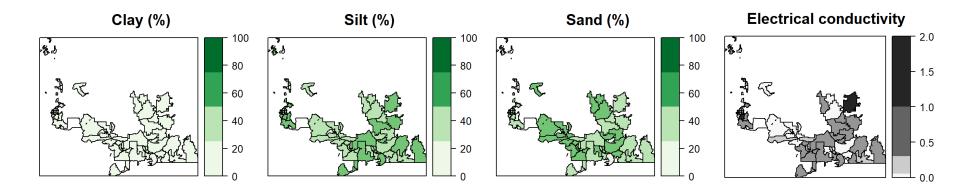
> Future models in Washington:

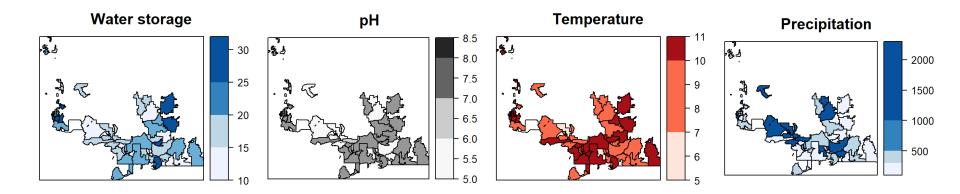
- Include temperature, soil texture, electrical conductivity, and soil pH
- Use flexible forms when possible
- > Motivates need to collect rich animal-level covariate data, as done in the current canine seroprevalence study
- > Demonstrates the utility of collecting veterinary data for an environmental pathogen of One Health concern

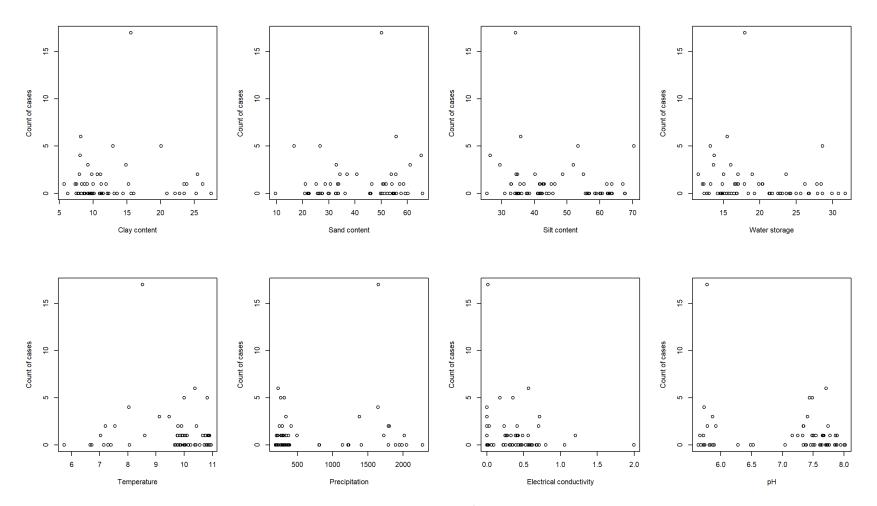

Acknowledgments

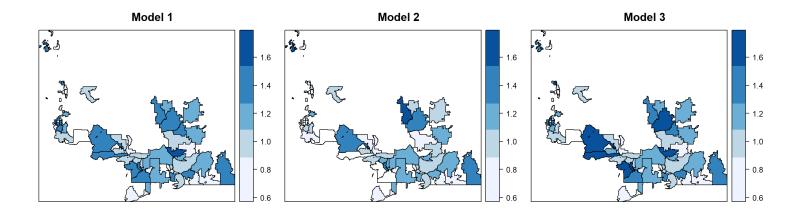

> **Department of Health:**

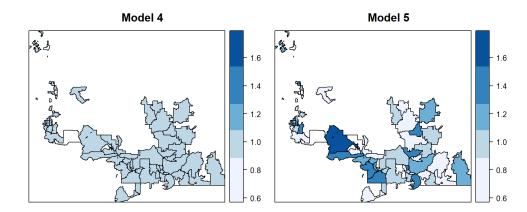
- Wayne Clifford
- Dr. Ron Wohrle
- Dave Kangiser
- > Center for One Health Research, University of Washington:
 - Dr. Peter Rabinowitz

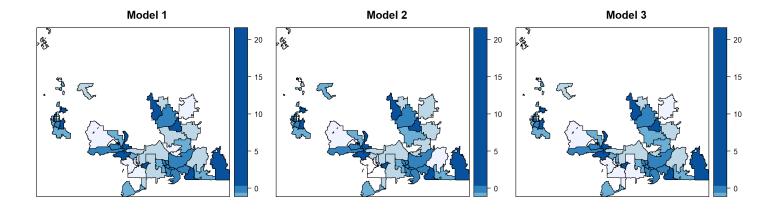



> Questions?

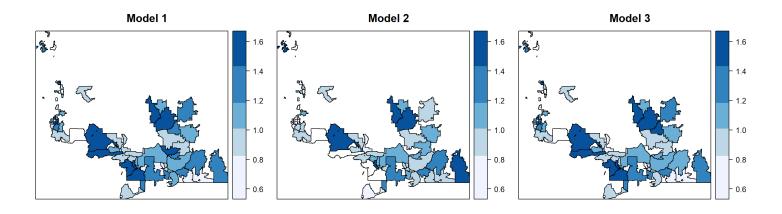



Estimated PRs, width of 95% CI

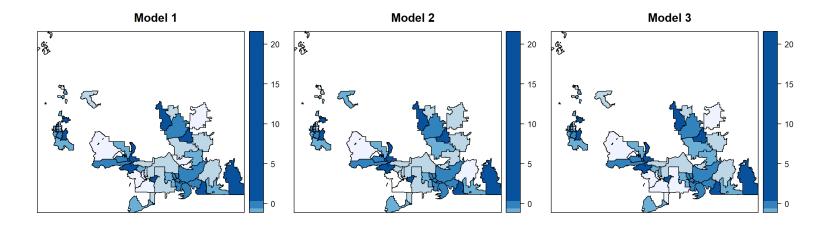


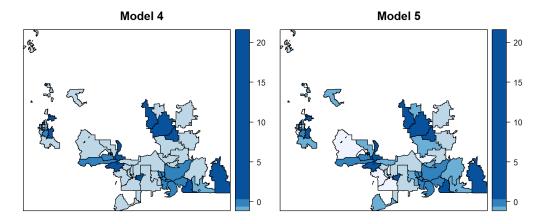


Case counts vs. predictors




Predicted PORs, logistic model, no de-trending


Model 4 Model 4 Model 5 Model 5 Model 5 Model 5 Model 5 Model 5 Model 6 Model 5 Model 6 Model 5 Model 6 Mod


Model residuals, logistic model, no de-trending

Predicted PORs, quasi-likelihood model, no de-trending

Model residuals, quasi-likelihood model, no de-trending

Random effects estimates, smoothing models

Parameter	Model 1	Model 2	Model 3	Model 4	Model 5
$\hat{\sigma_e}$ (non-spatial model)	$0.008\ (0.004,\ 0.023)$	$0.008 \ (0.004, \ 0.024)$	0.008 (0.004, 0.023)	0.008 (0.004, 0.023)	$0.008 \ (0.004, \ 0.023)$
$\hat{\sigma_e}$ (spatial model)	$0.008\ (0.004,\ 0.022)$	$0.008 \ (0.004, \ 0.023)$	0.008 (0.004, 0.024)	0.007 (0.003, 0.018)	$0.008\ (0.004,\ 0.024)$
$\hat{\sigma_s}$	0.008 (0.004, 0.023)	0.008 (0.004, 0.024)	$0.0083 \ (0.004, \ 0.025)$	$0.007\ (0.003,\ 0.019)$	$0.008\ (0.004,\ 0.023)$

Posterior median (95% credible interval). $\hat{\sigma}_e$: independent random effects; $\hat{\sigma}_s$: spatial random effects.